Article focuses on the identification of factors affecting the non-response in Polish household surveys. The analyse uses data from the survey realized on a random sample of Polish households in 2013 in project Determinant of Educational Decisions. Logistic regression model and classification tree procedure and hybridization of this approach was used to identify factor affecting probability of non-responds. Noncontact and noncooperation in the study was considered separately. Results confirmed that noncontact and noncooperation are two entirely different processes and rules for participation in the study significantly differentiate into subpopulations of Polish households varied by socio-economic features. Efficient organization of the research process should take into account both regional differences in the availability and willingness of cooperation as well as the respondents’ preferences in regarding the way in making contacts.
no-response rate, noncontact, noncooperation, logistic regression, classification tree procedure, hybrid model
Brehm J., (1993), The Phantom Respondents: Opinion Surveys and Political Representation, Ann Arbor, University of Michigan Press.
De Heer W., (1999), International Response Trends, Results of International Survey, Journal of Official Statistics, 15 (2), 129–142.
Dillman D. A., (2000), Mail and Internet Surveys: The Tailored Design Method, 2nd edition, New York, Wiley.
Goyder J., (1987), Surveys on Surveys: Limitation and Potentialities, Public Opinion Quarterly, 50, 27–41.
Groves R. M., (2006), Nonresponse Rates on Nonresponse Bias In Household Surveys, Public Opinion Quarterly, 70, 646–675.
Groves R. M., Couper M. P., (1998), Noresponse in Household Interview Surveys, New York, Wiley.
Groves R. M., Singer E., Corning A., (2000), Leverage-Saliency Theory of Survey Participation. Description and Illustration, Public Opinion Quarterly, 64, 299–308.
Lin I-F., Schaeffer N. C., (1995), Using Survey Participants to Estimate the Impact of Nonparticipation, Public Opinion Quarterly, 59, 236–258.
Lynn P., (2002), PEDAKSOIS: Methodology for Collecting Data about Survey Non-respondents, Working Papers of the Institute for Social and Economic Research, paper 2002-05, Colchester: University of Essex, www.iser.essex.ac.uk/pubs/workpaps/isr/2002-05.pdf
Martin J., Matheson J., (1999), Responses to Declining Response Rate on Government Surveys, Survey Methodology Bulletin, 45, 33–37.
Paradysz J., Szymkowiak M., (2007), Imputacja i kalibracja jako remedium na braki odpowiedzi w badaniu budżetów gospodarstw domowych, Taksonomia, 14, Klasyfikacja i analiza danych – teoria i zastosowania, 74–81.
Piasecki T., (2014), Metody imputacji w badaniach gospodarstw domowych, Wiadomości Statystyczne, 9, 1–20, Rószkiewicz M., (2015), Milcząca większość. Uwarunkowania poziomu wskaźnika braku odpowiedzi w środowisku gospodarstw domowych w Polsce w 2013 r. Próba diagnozy, PN Taksonomia, 24, Klasyfikacja i analiza danych – teoria i zastosowania.
Schnell R., (1997), Nonresponse in Bevölkerungsumfragen, Opladen (Leske + Budrich).
Steeh Ch., Kirgies N., Cannon B., De Witt J., (2001), Are They Really as Bad as They Seem? Nonresponse Rate at the End of Twentieth Century, Journal of Official Statistics, 17 (2), 227–247.
Stinchcombe A. L., Jones C., Sheatsley P., (1981), Nonresponse Bias for Attitude Questions, Public Opinion Quarterly, 45, 359–375.
Stoop I. A. L., (2005), The Hunt for the Last Respondent. Nonresponse in Sample Surveys, Social and Cultural Planning Office of the Netherlands, The Hague.
Sztompka P., (1999), Stawanie się społeczeństwa: pomiędzy strukturą a zmianą, w: Kurczewska J., (red.), Zmiana społeczna, 39–54.
Żyra M., Warno K., (2013), Braki odpowiedzi w badaniach gospodarstw domowych w Polsce, http://stat.gov.pl/cps/rde/xbcr/lodz/ASSETS_Konferencja_MRS_2013_Zyra_M_Warno_K_Braki_odpowiedzi_w_badaniach_gospodarstw_domowych_w_Polsce.pdf